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Vertex functions, spectral weights, and anisotropy in phonon-assisted
multimagnon optical absorption

D. Garcia, J. Eroles, and J. Lorenzana
Centro Atómico Bariloche and Instituto Balseiro, 8400 San Carlos de Bariloche, Argentina

~Received 17 April 1998!

We discuss the general vertex function coupling light with phonon-assisted multimagnon excitations in
perovskitelike antiferromagnets. We make a symmetry analysis and use exact diagonalization of a multiband
Peierls-Hubbard Hamiltonian in a small cluster to propose a simple parametrization of the vertex. The param-
eters obtained determine the strength of the spectral weight, the optical anisotropy, and the momentum depen-
dence of the vertex. The nonperturbative results are compared with perturbation theories in the hybridization.
We find that although the momentum dependence of the vertex is similar to the one obtained in perturbation
the absolute values renormalize strongly and the anisotropy in lamellar compounds changes in two orders of
magnitude. This explains the success of the perturbative computation in getting the correct line shape for
phonon-assisted multimagnon absorption@J. Lorenzana and G. A. Sawatzky, Phys. Rev. Lett.74, 1867~1995!#
but the poor results for the strength of the optical anisotropy. Our calculated values of the anisotropy are in
good agreement with experiments.@S0163-1829~98!04236-2#
on
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I. INTRODUCTION

Antiferromagnetic insulators show optical absorpti
bands related to spin excitations inside the insulating gap1–5

Recently, a detailed theory was presented that expla
these bands in terms of phonon-assisted absorption of m
magnon excitations.6–8

These absorption bands reveal precious information ab
the dynamical response of the antiferromagnet that is d
cult or impossible to obtain by other means like Raman
neutron scattering.9 In order to extract this information from
the experiments a precise knowledge of the light-magn
phonon vertex function is needed.

Previous studies6–8 have used perturbation theory in th
hybridization ~PTH! to derive an effective Hamiltonian fo
the coupling of light with these excitations. However, re
materials are far from being in the perturbative regime10

Despite that, computations using PTH give an excellent
count of the experimental lineshapes.6–8

On the other hand, a striking feature of the experimen
data in layered materials is the very strong optical anisotr
of these absorption bands. For example, in materials w
CuO2 layers almost all the spectral weight appears when
electric field is oriented in the CuO2 planes~see Fig. 1!. This
is puzzling for the theory because no selection rule preclu
to have an absorption perpendicular to the plane. In f
PTH strongly underestimate the optical anisotropy.

In this work we present a nonperturbative method to co
pute the vertex functions based on exact diagonalization
multiband Peierls-Hubbard Hamiltonian on a small clust
We find that the overall scale of the vertex function det
mining the spectral weight gets strongly renormalized in
valent systems like the cuprates. This can change the op
anisotropy in as much as two orders of magnitude respec
the PTH result. This is in good agreement with the ve
strong anisotropy observed.

In addition, the general symmetry properties of the ver
are discussed. This allows us to propose a simple param
zation of the vertex. We find that the momentum depende
PRB 580163-1829/98/58~20!/13574~6!/$15.00
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of the vertex is quite similar to the one obtained with PT
This explains the success of PTH to describe theline shapes
and put those theoretical results on firmer grounds.

We also study the effect of the direct exchange betw
the metal and the ligand in perovskitelike materials that
necessary to describe correctly11 the magnetic coupling be
tween metals. We find that for some parameters the mom
tum dependence of the vertex changes qualitatively giv
access to different regions in momentum space.

The paper is organized as follow. In Sec. II we make
brief outline of the theory and discuss the symmetries of
vertex. Then we compare the results obtained for the ani
ropy in PTH~Sec. III! vs the nonperturbative approach~Sec.
IV !. Finally we present our conclusions~Sec. V!.

II. MULTIMAGNON INFRARED ABSORPTION

A. Model

Here we present a brief account of the theory to fix t
notation. For details see Ref. 7. For simplicity we refer to
insulating CuO2 plane~spin-1/2, one hole per Cu! but similar
arguments apply to other antiferromagnets with larger s
or different dimensionality.

The theory starts from a multiband Peierls-Hubba
Hamiltonian in the presence of an electrical fieldE:

H5 (
iÞ j ,s

t i j ~$uk%!cis
† cj s1(

i ,s
ei~$uk%,E!cis

† cis

1(
i

Uici↑
† ci↓

† ci↓ci↑1 (
iÞ j ,s,s8

Ui j cis
† cj s8

† cj s8cis

1 (
iÞ j ,s,s8

Ki j cis
† cj s8

† cj scis81(
l

pl
2

2Ml

1(
k,l

1

2
ukk̄klul2E•Pph , ~1!
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PRB 58 13 575VERTEX FUNCTIONS, SPECTRAL WEIGHTS, AND . . .
where thecis
† operator creates a hole at orbitali ~we consider

Cu dx22y2 and Opx,y orbitals!.
For the on-site matrix elements we takeei5Ed,i(Ep,i)

and Ui5Ud(Up) for i in a Cu ~O! site. For the intersite
Coulomb matrix elements we takeUi j 5Upd ~direct! and
Ki j 5Kpd ~exchange! if i and j are Cu and O nearest neigh
bors, and zero otherwise.Kpd , the exchange integral be
tween Cu and O~Ref. 11! was not included in Ref. 7 and i
is necessary to get the correct value of the superexchang
the accepted values of the other parameters.10 t i j is the hop-
ing between nearest neighbors (tpd,i j , between Cu and O
tpp,i j between two oxygens!.

Ml is the mass of the atoms,pl is their momentum,ui is
the displacement from the equilibrium positionRi , andk̄kl is
a spring constant tensor.Pph is the phonon dipole momen
For simplicity we only allow the O to move. With this ap
proximationPph5eZ(kuk , andZ is the ionic charge of the
O (Z522).

The on-site energies and the hoppings are modified w
the movement of the atoms12 and with the electric field ac
cording to:

tpd,kl~$uk%!5tpd
0 1~6 !a

~Rk2Rl !

uRk2Rl u
uk

tpp,kl~$uk%!5tpp
0 1~6 !g

~Rk2Rl !

uRk2Rl u
~uk2ul !

Ed,i~$uk%,E!5Ed
01b( 8

k
~7 !uk1eE•~Ri1ui !

Ep,i~$uk%,E!5Ep
01eE•~Ri1ui !. ~2!

For the hopping (tpp,kl ,tpd,kl) the sign in parenthesis is suc
that the matrix element increases if the atoms came clo
With the on-site energyEd,i ~or Ep,i) the opposite is true
The prime in the sum ink indicates nearest neighbors.

From now on we will reserve latin indexi , j ,k to label Cu
sites, greek indexa,b to label the Cu-Cu bonds and also th
O’s that site on those bonds, and greek indexesm,n to label
the Cartesian components of the vectors. In two-dimensio
~2D! systems we take a coordinate system with thex axis in

FIG. 1. Measured absorption with the electric field parallel~s!
and perpendicular~p! to the CuO2 plane for La2CuO4 as a function
of the photon energy~Ref. 2!. A linear background must be sub
tracted from the experimental data that almost agree with thp
absorption.
for

th

er.

al

the direction of a Cu-O bond and thez axis perpendicular to
the Cu-O plane. With this conventiona,b5x,y in two-
dimensional systems. For systems with 1D Cu-O chains
will take x as the chain direction.

We will take the following reference parameter sets a
propiated for Cu-O planes~all energy values in eV!7,12,13and
chains:

Up55; Ud58; Upd51

tpp
0 50.5; tpd

0 51.2

a5
7

2

tpd
0

apd
; b52

Upd

apd
; g5&

tpp
0

apd

apd53.6 a.u.

To study the effect of covalencyD[Ep
02Ed

0 is taken
variable in the range 0–10. ForKpd we took two values:
Kpd50 andKpd520.22.

B. Effective Hamiltonian and optical conductivity

At low energies all physical properties are given by
Heisenberg-like Hamiltonian for the layer:

H5(
i ,a

Ji ,a~$uk,b%,E!Bi ,a1Hph2E•Pph . ~3!

Here,Bi ,a5S(Ri)S(Ri1ea) whereRi1ea is the position of
the Cu nearest neighbor of sitei in a direction.
Ji ,a($uk,b%,E) is a generalized superexchange depending
the phonons and electric field. It will be computed in t
following sections by two different methods.

Ji ,a can be expanded as a Taylor series inE and $uk,b%.
For a given Cu-Cu bond like the one in Fig. 2 this reads

Ji ,a5J01(
n

]Ji ,a

]En En1 (
j ,b,m

]Ji ,a

]uj ,b
m uj ,b

m

1 (
j ,b,m,n

]2Jia

]En]uj ,b
m Enuj ,b

m 1••• ~4!

J0 is the usual superexchange.]Ji ,a /]En is zero because o
symmetry. This means that there is not direct absorption
magnons~See Ref. 7!.

The 1st order derivatives inu @Eq. ~4!# gives the magnon-
phonon interaction. Second order derivatives inu renormal-
ize the spring constantsk̄ or give higher order magnon
phonon interactions. All of these terms are discussed in R
7 and will not be discussed here.

The second-order cross-derivatives inE and u are the
terms responsible for the coupling of the electric field w
the magnon and phonons and are the ones that we analy
detail in this work.

We define

qab
mn~Ri ,a2Rj ,b![

]2Ji ,a

]En]uj ,b
m . ~5!
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qab
mn(Ri ,a2Rj ,b) has units of charge so we call it an effectiv

charge for the coupling of light with magnon-phonon exci
tions.

We introduce the Fourier transforms:

Bi ,a5(
k

eik•RiBk,a . ~6!

ui ,b
m 5(

k
eik•Riuk,b

m . ~7!

qab
mn~Ri ,a2Rj ,b!5(

k
eik•~Ri2Rj !qab

mn~k!. ~8!

The dipole moment can be computed asP52¹EH. Us-
ing Eqs.~3!–~8! one gets

P5P1ph1P2ph1P1ph1mag1 . . . . ~9!

P1ph andP2ph are the dipole moment related to the abso
tion of one and two phonons, respectively, and will not
considered here~see Ref. 7!. P1ph1mag is associated with the
absorption of magnons assisted by a one-phonon proces

P1ph1mag
n 52N2 (

p,a,b,m
qab

mn~p!B2paupb
m . ~10!

Onceqab
mn(p) is known we can compute the optical co

ductivity. From the dipole-dipole correlation function we g
for n polarization:7

sn~v!5vs0 (
p,a8,a

qp,a8,a,n
2 Im^^Bp

a ;B2p
a8 &&~v2v0!.

~11!

Here we use Zubarev’s notation14 for the Green’s function

(^^Bp
a ;B2p

a8 &&), v0 is the phonon frequency that we assum

FIG. 2. ~a!, ~b!, and~c! Different charges when the electric fiel
is in the x,y,z directions, respectively. Only the non-negligib
charges are shown. In the case of the electric field in thex direction
we also show the sign of the charges. The thicker arrows repre
the Cu holes. R and L identify the right and left Cu.
-

-

:

to be independent of momentum and phonon polariza
and defined the light-magnon-phonon vertex as

qp,a8,a,n
2 [

N2

e2 (
b,m

qab
mn~p!qa8b

mn
~2p!, ~12!

s052
4pe2

MVcuv0
. ~13!

Vcu is the volume per Cu atom.
We define the optical anisotropyu as

u5
*sx~v!dv

*sz~v!dv
. ~14!

C. Symmetry considerations and parametrization of the vertex

Here we discuss the general symmetry of the vertex. T
will greatly simplify the computations below.

Since the vertex is given by derivatives ofJ, and J is
associated with a Cu-Cu bond the relevant symmetry gr
is the one that leaves the lattice invariant respect to p
group operations centeredin the bond~i.e., an O site!. In our
case this isD2h .

In Eq. ~5! E and u transform as vectors so the seco
order derivatives transforms as the product of their trans
mations. It is easy to check that the vertex transform l
irreducible representations ofD2h .15 With this qab

xx

5]2J/]Ex]ux transforms as theAg (x2) representation,
qab

xy 5]2J/]Ex]uy as B1g (xy), qab
xz 5]2J/]Ex]uz as the

B2g (xz) representation, etc. This fixes all the relative sig
of the charges as displayed in Fig. 2.

Apart from being related by symmetry, for reasonable p
rameters the charges decreased quickly with the distance
tween the bond and the O that moves@ uRi ,a2Rj ,bu in Eq.
~5!#. This allows us to describe all the non-negligible a
nonsymmetrically related charges with only four paramete

qaa
zz ~0!5qI

qaa
bb~0!5qI*

qaa
aa~0!5qA2

qaa
aa~2apdx̂!52qA

qab
ba@apd~ x̂1 ŷ!#52qA , ~15!

where aÞb. The last relation holds only approximatel
With our parameters the difference is less than 10%.

In the next sections we will compute these paramet
with two different methods.

With this parametrization the vertex functions@Eq. ~12!#
for a Cu-O plane takes the form

qp,a,a,a
2 5qA2

2 24qA2qAcos~pa!

14qA
2cos2~pa!116qA

2sin2S pa

2 D sin2S pb

2 D
~16!

nt
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qp,a,a,b
2 5qI*

2 ~17!

qp,a,a,z
2 5qI

2. ~18!

HereaÞb. The rest of theqp
2 are zero or negligible. For a

Cu-O chain in thex direction like the ones in Sr2CuO3 the
vertex takes the form

qp,x,x,x
2 5qA2

2 24qA2qAcos~px!

14qA
2cos2~px! ~19!

qp,x,x,y
2 5qI

2 ~20!

qp,x,x,z
2 5qI

2 ~21!

and as previously, the rest of theqp
2 are zero or negligible.

III. PERTURBATIVE COMPUTATION
OF THE EFFECTIVE CHARGES

J can be computed for a general configuration of the o
gens and the electric field using perturbation at the 4th o
in the hoppingtpd ~Ref. 10! as the splitting between th
singlet and the triplet state. For simplicity we will consid
the Cu2O7 cluster shown in Fig 2. This is an exact 4th ord
computation whenKpd , tpp50 and a very good approxima
tion otherwise. In the former case we get

J~4!52tR
2 tL

2F1

e S 1

DL
1

1

DR
D 2

1
1

DL
2

1

Ud1~DL2DR!
1

1

DR
2

1

Ud2~DL2DR!G ,

~22!

where we defined

DL[~D1Upd!2eapdx̂E2eu0,xE1lb(
k,a

~6 !uk,a
a

DR[~D1Upd!1eapdx̂E2eu0,xE2lb(
k,a

~6 !uk,a
a

e[~2D1Up!22eu0,xE1lb(
k,a

~6 !uk,a
a

tR[tpd1au0,x

tL[tpd2au0,x .

The sum ink is over nearest neighbors andapd is the dis-
tance between Cu and O.

As noted by other authors11 it is important to include in
the HamiltonianKpd to get a correct estimate ofJ. For ex-
ample, forKpd520.22 andD52.7 eV we get, using exac
diagonalization,~see next section! J050.13 eV which is the
accepted value of the superexchange for La2CuO4. Although
Kpd is relatively small it has a strong effect because it ent
in second order10 as
-
er

r

s

J~2!52KpdS tL
2

DL
22Kpd

2
1

tR
2

DR
22Kpd

2 D . ~23!

With these expressions one can compute all the der
tives in Eq. ~4!. This gives access to the magnon-phon
interaction, effective charges, and all other possible coup
between magnons, phonons, and light.

Making a power expansion whenKpd , tpd , bapd , and
aapd are much smaller thanD0 , Ud , and Up we get the
following parameters:

qI58e
tpd
4

D2 F 1

D0
S 1

Ud
1

2

e0
D1

2

e0
2G18e

tpd
2

D3
Kpd

qA58e
tpd
4

D2
bapdF 2

D0
2 S 1

Ud
1

2

e0
D1

1

Ud
S 1

D0
1

2

Ud
D 2G

124e
tpd
2

D4 bapdKpd

qA2522qA1qI1qC

qI* 5qI ,

where we defined

e052D1Up

D05D1Upd

qC5216e
tpd

D3
aapdKpd .

We see that only 3 parameters are independent and w
Kpd50 only 2.

In Fig. 3 we show the charges as a function ofD. The
mechanism giving rise toqI and qA in the absence ofKpd
were discussed in Ref. 7.qI is due to the process in whic
the charge of the O that moves depends on the surroun
spin configuration. We call it a local charge. On the oth
hand,qA is related to a process in which the displacemen
an O produces a spin depend flow of charge between c
pers, reminiscent of the charge-phonon effect.16 We call it a
nonlocal charge.

Due to the fact thatKpd appears at lower order in th
perturbations theory it gives a strong contribution to the
fective charges, and the contributionqC appears. This las
charge can be understood in the following way: When
central O moves in the bond directiontL andtR , andDL and
DR in Eq. ~23! get out of balance producing a spin depend
flow of charge, i.e.,qC is a nonlocal charge.

IV. NONPERTURBATIVE COMPUTATION OF THE
EFFECTIVE CHARGES AND SPECTRAL WEIGHTS

To obtain nonperturbative values forqab
mn(Ri) we compute

exactlyJ using a Lanczos exact diagonalization techniqu17

taking the full Peierls-Hubbard Hamiltonian@Eq. ~1!#.
J($uka%,E) is obtained as the splitting between the sing
ground state and the first excited triplet state in a Cu2O7
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cluster for a general configuration of$uia% andE. Then the
derivatives in Eq.~4! are obtained numerically. For the ma
trix element values given in Sec. II all 4 parameters in E
~15! are needed.

In Fig. 4 we show the charges obtained with exact dia
nalization and perturbations. As expected for the bigD both
computations converge~see inset!. However, this conver-
gence is extremely slow, much slower than for the super
change~see Ref. 10!. This makes perturbation theory a ve
poor approximation to determine the charges.

We see that the chargesqI , qI* , andqC are overestimated
in perturbations whileqA is underestimated. Notice that i
PTH qI and qA are of the same order whereas in the ex
computation they differ strongly. This has dramatic con
quences for the optical anisotropy as we show below. A
qC , which in perturbation is entirely due toKpd , is strongly
overestimated in that approach.

For qA this can be understood on the basis that this i
dynamical process where, associated with the displacem
of the O’s, there is a flux of charge from one Cu to the oth
There are processes beyond fourth order perturbation th
that are very important for this charge. For example, o

FIG. 3. Perturbative chargesqA ~dotted lines!, qI ~dashed lines!,
andqC ~full line! as a function ofD for the parameters of Sec. II
The thick lines correspond toKpd520.22 and the thin lines to
Kpd50. In this last caseqC50 ~not shown!.

FIG. 4. ChargesqA ~dotted lines!, qI ~dashed lines!, andqC ~full
line! as a function ofD for the parameters of Sec. II andKpd

520.22. The thick curves correspond to the exact computation
the thin ones to the perturbative result. The insets show an ex
sion of the largeD region.
.

-

x-

t
-
o

a
nt

r.
ry
e

process that becomes important in covalent systems an
not taken into account in perturbations at the considered
der is the jump of one hole from one Cu to the O’s surroun
ing the other and forming a Zhang-Rice singlet in the fin
state.18 Clearly, this kind of process is of a larger order
perturbation than the one considered above. We believe
this process makesqA dominate over the other charges f
covalent materials.

From the above results we conclude that the ver
strongly simplify in a planar covalent material as

qp,a,a,a
2 516qA

2Fsin2S pa

2 D sin2S pb

2 D1sin4S pa

2 D G , ~24!

qp,a,a,b
2 5qI

2, ~25!

qp,a,a,z
2 5qI

2. ~26!

Here,aÞb. The rest of theqp
2 are zero or negligible. We se

that qA determines the strength of the in-plane absorpti
whereasqI determines the out-of-plane absorption.

Equation~24! is the same expression proposed on Refs
and 7 on heuristic arguments and which we put here
firmer grounds. We see that the in-plane vertex filters out
p50 response.

For covalent systems with Cu-O chains we get:

qp,x,x,x
2 516qA

2sin4S px

2 D , ~27!

qp,x,x,y
2 5qI

2, ~28!

qp,x,x,z
2 5qI

2. ~29!

This is the form used in Ref. 8 to describe the absorption
Sr2CuO3.

A quick estimate of the spectral weights in the 2D ca
neglecting quantum fluctuations in the ground state~see the
Appendix! shows that the anisotropy goes like this:

u.5S qA

qI
D 2

. ~30!

From this quadratic dependence and from the previous
sults for the charges we can see that PTH will give a v
poor result for the optical anisotropy.

In Fig. 5 we see the optical anisotropy computed by
agonalizing exactly the Heisemberg model on a 434 lattice.
We have exactly evaluated^^Bp

y ;B2p
y && in Eq. ~11! and com-

puted the optical anisotropy both with the exact charges
the perturbative ones. We see that the exact estimate di
from the perturbative one in two order of magnitudes. T
explains the strong anisotropy seen in the experiments
that cannot be explained in a perturbative computation.

It is interesting to remark that for very ionic materialsqC
dominates. In this limit the in-plane vertex becomes mom
tum independent (qp,a,a,a

2 5qC
2 ) giving access to the whole

momentum space.

d
n-
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V. CONCLUSIONS

We have shown that PTH is a very poor approximation
compute the strength of phonon-assisted multimagnon
sorption bands in covalent materials. We introduced a n
perturbative method based on exact diagonalization o
small cluster. With the latter we find that the overall streng
gets strongly renormalized respect to the former method
pending on the electric field polarization. For electric fiel
in the plane we find a much larger strength, whereas
electric fields perpendicular to the plane we find a mu
lower spectral weight. As a result we find an enormous
tical anisotropy that is in accord with the experimental res
~Fig. 1!.

On the contrary, the momentum dependence of the ve

FIG. 5. Optical anisotropy as a function ofD calculated with
Kpd520.22 and the parameters of Sec. II. We used the pertu
tive charges and the exact ones.
, J

Y

no

Y

o
b-
n-
a

h
e-

r
h
-

lt

ex

is in good accord with the one used in Refs. 6–8. This
plains the success of these works to describe the first pea
the two magnon-phonon assisted excitations in the pla
compound La2CuO4

6,7 and the whole spectrum in the 1D
compound Sr2CuO3.

8

Additionally, we discussed the symmetry of the verte
This fixes the way the vertex transforms under the differ
symmetry operation and should serve as a guide to
simple parametrizations or to get a semiphenomenolog
one when it is difficult or impossible to get the charges.

We generalized the theory for a more realistic Ham
tonian than the one considered previously,7 including the di-
rect Cu-O exchange. We find a contribution to the vertex t
dominates for very ionic materials and that makes the ve
practically momentum-independent, giving access to
whole Brillouin zone.

APPENDIX: ISING ESTIMATES OF SPECTRAL WEIGHT

Here we present a quick estimate of the spectral weig
when the quantum fluctuations of the ground state are
glected. This provides us with simple expressions for
spectral weights.

We neglect thexy part of the operators in the Hamiltonia
but keep it in the dipole moment operatorP @Eq. ~10!#. Since
the ground state is now the classical Neel state and there
not quantum fluctuations, it is trivial to compute the dynam
cal correlation function of Eq.~11!,

Im^^Bp
a ;B2p

b &&Neel
v0 5

1

4
d~v23J2v0!, ~A1!

and to get an analytical expression for the anisotropy.
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